Get Connected!

Be part of the largest network for Radiology professionals!

Investigative Radiology - Current Issue

Investigative Radiology - Current Issue
  1. Wavelet-Based Angiographic Reconstruction of Computed Tomography Perfusion Data: Diagnostic Value in Cerebral Venous Sinus Thrombosis
    imageObjective: The aim of this study was to test the diagnostic value of wavelet-based angiographic reconstruction of CT perfusion data (waveletCTA) to detect cerebral venous sinus thrombosis (CVST) in patients who underwent whole-brain CT perfusion imaging (WB-CTP). Materials and Methods: Datasets were retrospectively selected from an initial cohort of 2863 consecutive patients who had undergone multiparametric CT including WB-CTP. WaveletCTA was reconstructed from WB-CTP: the angiographic signal was generated by voxel-based wavelet transform of time attenuation curves (TACs) from WB-CTP raw data. In a preliminary clinical evaluation, waveletCTA was analyzed by 2 readers with respect to presence and location of CVST. Venous CT and MR angiography (venCTA/venMRA) served as reference standard. Diagnostic confidence for CVST detection and the quality of depiction for venous sections were evaluated on 5-point Likert scales. Thrombus extent was assessed by length measurements. The mean CT attenuation and waveletCTA signal of the thrombus and of flowing blood were quantified. Results: Sixteen patients were included: 10 patients with venCTA-/venMRA-confirmed CVST and 6 patients with arterial single-phase CT angiography (artCTA)–suspected but follow-up-excluded CVST. The reconstruction of waveletCTA was successful in all patients. Among the patients with confirmed CVST, waveletCTA correctly demonstrated presence, location, and extent of the thrombosis in 10/10 cases. In 6 patients with artCTA-suspected but follow-up–excluded CVST, waveletCTA correctly ruled out CVST in 5 patients. Reading waveletCTA in addition to artCTA significantly increased the diagnostic confidence concerning CVST compared with reading artCTA alone (4.4 vs 3.6, P = 0.044). The mean flowing blood-to-thrombus ratio was highest in waveletCTA, followed by venCTA and artCTA (146.2 vs 5.9 vs 2.6, each with P < 0.001). In waveletCTA, the venous sections were depicted better compared with artCTA (4.2 vs 2.6, P < 0.001), and equally well compared with venCTA/venMRA (4.2 vs 4.1, P = 0.374). Conclusions: WaveletCTA was technically feasible in CVST patients and reliably identified CVST in a preliminary clinical evaluation. WaveletCTA might serve as an additional reconstruction to rule out or incidentally detect CVST in patients who undergo WB-CTP.



  2. Longitudinal Computed Tomography Monitoring of Pelvic Bones in Patients With Breast Cancer Using Automated Bone Subtraction Software
    imageObjective: The aim of this study was to optimize computed tomography (CT) surveillance of skeletal metastases in patients with breast cancer through the use of osseous subtraction maps between baseline and follow-up examinations created by a novel software algorithm. The new postprocessing algorithm segments the original bone followed by image intensity-based rigid alignment creating gray-shaded maps that highlight focal or diffuse loss or increase in bone attenuation. Materials and Methods: Institutional review board was obtained for this retrospective data evaluation. A total of 33 consecutive patients (31 female; 2 male; mean age, 59.13 ± 12.68 years; range, 32–81 years) with breast cancer were included, who underwent 143 standardized baseline and follow-up CT examinations between February 2014 and June 2016. We classified bone metastases into lytic, sclerotic, and mixed osseous lesions. Any new osteolysis inside a known sclerotic lesion and enlargement of pre-existing sclerotic lesions were considered to represent progressive disease (PD), whereas no change was classified as stable disease (SD). Results were compared additionally with the course of the disease considering the entire skeleton and other involved organs. Software-created automated bone subtraction maps were compared with conventional CT interpretations of axial 5-mm and coronal 1-mm reformatted images. Region of interest measurements were used to quantify new lesions. Results were validated by clinical and CT follow-up. Reading time was evaluated. Results: Skeletal metastases were present in 17/33 (51%) patients (9 sclerotic, 2 lytic, 6 mixed) at baseline. The use of bone subtraction maps resulted in an overall change of response classification into PD in 9/33 (8.1%) patients. Compared with conventional CT evaluation, the bone subtraction maps disclosed 123 new or enlarging sclerotic and 32 new lytic metastases in 23/33 (30.9%) examinations. Mean attenuation of new bone lesions (sclerotic or lytic) significantly increased or decreased (P < 0.01) in all patients. Bone attenuation in pelvic areas without evident metastatic disease significantly increased in patients with PD (P = 0.019), whereas there was no change in SD (P = 0.076). Lesion-based sensitivity, specificity, accuracy, positive predictive values, and negative predictive values were 98.7%, 79.5%, 94.5%, 95.1%, and 94.5%, respectively. Interobserver agreement was good (κ = 0.80; P = 0.077). Reading time was significantly faster for the bone subtraction maps versus 5-mm axial images (P < 0.001). Conclusions: Longitudinal bone subtraction maps increase the accuracy and efficiency of CT diagnosis of skeletal metastases in patients with breast cancer.



  3. An Ultra-High Field Study of Cerebellar Pathology in Early Relapsing-Remitting Multiple Sclerosis Using MP2RAGE
    imageObjectives: The aim of this study was to study focal cerebellar pathology in early stages of multiple sclerosis (MS) using ultra-high-field magnetization-prepared 2 inversion-contrast rapid gradient-echo (7T MP2RAGE). Materials and Methods: Twenty early-stage relapsing-remitting MS patients underwent an MP2RAGE acquisition at 7 T magnetic resonance imaging (MRI) (images acquired at 2 different resolutions: 0.58 × 0.58 × 0.58 mm3, 7T_0.58, and 0.75 × 0.75 × 0.90 mm3, 7T_0.75) and 3 T MRI (1.0 × 1.0 × 1.2 mm3, 3T_1.0). Total cerebellar lesion load and volume and mean cerebellar lesion volume were compared across images using a Wilcoxon signed-rank test. Mean T1 relaxation times in lesions and normal-appearing tissue as well as contrast-to-noise ratio (CNR) measurements were also compared using a Wilcoxon signed-rank test. A multivariate analysis was applied to assess the contribution of MRI metrics to clinical performance in MS patients. Results: Both 7T_0.58 and 7T_0.75 MP2RAGE showed significantly higher lesion load compared with 3T_1.0 MP2RAGE (P < 0.001). Plaques that were judged as leukocortical in 7T_0.75 and 3T_1.0 MP2RAGEs were instead identified as WM lesions in 7T_0.58 MP2RAGE. Cortical lesion CNR was significantly higher in MP2RAGEs at 7 T than at 3 T. Total lesion load as well as total and mean lesion volume obtained at both 7 T and 3 T MP2RAGE significantly predicted attention (P < 0.05, adjusted R2 = 0.5), verbal fluency (P < 0.01, adjusted R2 = 0.6), and motor performance (P = 0.01, adjusted R2 = 0.7). Conclusions: This study demonstrates the value of 7 T MP2RAGE to study the cerebellum in early MS patients. 7T_0.58 MP2RAGE provides a more accurate anatomical description of white and gray matter pathology compared with 7T_0.75 and 3T_1.0 MP2RAGE, likely due to the improved spatial resolution, lower partial volume effects, and higher CNR.



  4. Moderate Renal Failure Accentuates T1 Signal Enhancement in the Deep Cerebellar Nuclei of Gadodiamide-Treated Rats
    imageObjectives: The purpose of this preclinical study was to investigate whether moderate chronic kidney disease is a factor in potentiating gadolinium (Gd) uptake in the brain. Materials and Methods: A comparative study was performed on renally impaired (subtotal nephrectomy) rats versus rats with normal renal function. The animals received 4 daily injections of 0.6 mmol Gd/kg a week for 5 weeks (cumulative dose of 12 mmol Gd/kg) of gadodiamide or saline solution. The MR signal enhancement in the deep cerebellar nuclei was monitored by weekly magnetic resonance imaging examinations. One week after the final injection, the total Gd concentration was determined by inductively coupled plasma mass spectrometry in different regions of the brain including the cerebellum, plasma, cerebrospinal fluid, parietal bone, and femur. Results: After the administration of gadodiamide, the subtotal nephrectomy group presented a significantly higher T1 signal enhancement in the deep cerebellar nuclei and a major increase in the total Gd concentration in all the studied structures, compared with the normal renal function group receiving the same linear Gd-based contrast agent. Those potentiated animals also showed a pronounced hypersignal in the choroid plexus, still persistent 6 days after the last injection, whereas low concentration of Gd was found in the cerebrospinal fluid (<0.05 μmol/L) at this time point. Plasma Gd concentration was then around 1 μmol/L. Interestingly, plasma Gd was predominantly in a dissociated and soluble form (around 90% of total Gd). Total Gd concentrations in the brain, cerebellum, plasma, and bones correlated with creatinine clearance in both the gadodiamide-treated groups. Conclusions: Renal insufficiency in rats potentiates Gd uptake in the cerebellum, brain, and bones.



  5. Tailored Duration of Contrast Material Injection in High-Pitch Computed Tomographic Aortography With a Double-Level Test Bolus Method
    imageObjectives: To achieve the efficient usage of contrast material (CM) in high-pitch CT aortography, an appropriate duration of the CM injection is crucial. We used a modification of the double-level test bolus method for determination of proper injection duration with the aim of evaluating the image quality of tailored-duration CM injection compared with that of a fixed duration. Materials and Methods: The institutional review board approved retrospective review of 80 consecutive subjects who had undergone high-pitch 70-kVp CT aortography with a modified double-level test bolus method. The interval between peak enhancement at the aortic root and femoral artery was derived from the time/attenuation curves. A total of 40 subjects underwent CT aortography with individually set duration time from the results. The remaining subjects underwent CT aortography with a fixed-duration time. The density values at several parts of the aorta were assessed. The differences in image quality and CM amount used for each method were assessed by Welch test. Results: The injection duration was almost 50% shorter (median, 15 seconds; range, 11–25 seconds) when individually tailored. The mean CM amount was reduced by 50% (46.2–23.9 mL, P < 0.01). The range of mean CT attenuation throughout the aorta was not significantly different between the 2 methods (316–327 HU and 305–321 HU, P > 0.05, respectively). Conclusions: The modified double-level test bolus method in high-pitch CT aortography can significantly reduce the amount of CM without adversely affecting image quality.


  6. Feasibility of Multiparametric Magnetic Resonance Imaging of the Prostate at 7 T
    imageObjectives: The aim of this study was to evaluate the technical feasibility of prostate multiparametric magnetic resonance imaging (mpMRI) at a magnetic field strength of 7 T. Materials and Methods: In this prospective institutional review board–approved study, 14 patients with biopsy-proven prostate cancer (mean age, 65.2 years; median prostate-specific antigen [PSA], 6.2 ng/mL), all providing signed informed consent, underwent 7 T mpMRI with an external 8-channel body-array transmit coil and an endorectal receive coil between September 2013 and October 2014. Image and spectral quality of high-resolution T2-weighted (T2W) imaging (0.3 × 0.3 × 2 mm), diffusion-weighted imaging (DWI; 1.4 × 1.4 × 2 mm or 1.75 × 1.75 × 2 mm), and (1H) MR spectroscopic imaging (MRSI; real voxel size, 0.6 mm3 in 7:16 minutes) were rated on a 5-point scale by 2 radiologists and a spectroscopist. Results: Prostate mpMRI including at least 2 of 3 MR techniques was obtained at 7 T in 13 patients in 65 ± 12 minutes. Overall T2W and DWI image quality at 7 T was scored as fair (38% and 17%, respectively) to good or very good (55% and 83%, respectively). The main artifacts for T2W imaging were motion and areas of low signal-to-noise ratio, the latter possibly caused by radiofrequency field inhomogeneities. For DWI, the primary artifact was ghosting of the rectal wall in the readout direction. Magnetic resonance spectroscopic imaging quality was rated fair or good in 56% of the acquisitions and was mainly limited by lipid contamination. Conclusions: Multiparametric MRI of the prostate at 7 T is feasible at unprecedented spatial resolutions for T2W imaging and DWI and within clinically acceptable acquisition times for high-resolution MRSI, using the combination of an external 8-channel body-array transmit coil and an endorectal receive coil. The higher spatial resolutions can yield improved delineation of prostate anatomy, but the robustness of the techniques needs to be improved before clinical adoption of 7 T mpMRI.



  7. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs
    imageObjectives: Convolutional neural networks (CNNs) are a subtype of artificial neural network that have shown strong performance in computer vision tasks including image classification. To date, there has been limited application of CNNs to chest radiographs, the most frequently performed medical imaging study. We hypothesize CNNs can learn to classify frontal chest radiographs according to common findings from a sufficiently large data set. Materials and Methods: Our institution's research ethics board approved a single-center retrospective review of 35,038 adult posterior-anterior chest radiographs and final reports performed between 2005 and 2015 (56% men, average age of 56, patient type: 24% inpatient, 39% outpatient, 37% emergency department) with a waiver for informed consent. The GoogLeNet CNN was trained using 3 graphics processing units to automatically classify radiographs as normal (n = 11,702) or into 1 or more of cardiomegaly (n = 9240), consolidation (n = 6788), pleural effusion (n = 7786), pulmonary edema (n = 1286), or pneumothorax (n = 1299). The network's performance was evaluated using receiver operating curve analysis on a test set of 2443 radiographs with the criterion standard being board-certified radiologist interpretation. Results: Using 256 × 256-pixel images as input, the network achieved an overall sensitivity and specificity of 91% with an area under the curve of 0.964 for classifying a study as normal (n = 1203). For the abnormal categories, the sensitivity, specificity, and area under the curve, respectively, were 91%, 91%, and 0.962 for pleural effusion (n = 782), 82%, 82%, and 0.868 for pulmonary edema (n = 356), 74%, 75%, and 0.850 for consolidation (n = 214), 81%, 80%, and 0.875 for cardiomegaly (n = 482), and 78%, 78%, and 0.861 for pneumothorax (n = 167). Conclusions: Current deep CNN architectures can be trained with modest-sized medical data sets to achieve clinically useful performance at detecting and excluding common pathology on chest radiographs.



  8. Metal Artifact Reduction Magnetic Resonance Imaging Around Arthroplasty Implants: The Negative Effect of Long Echo Trains on the Implant-Related Artifact
    imageObjectives: Long echo train length (ETL) is an often recommended but unproven technique to decrease metal artifacts on magnetic resonance imaging (MRI) scans. Therefore, we quantitatively and qualitatively assessed the effects of ETL on metal artifact on MRI scans using a cobalt-chromium–containing arthroplasty implant system. Materials and Methods: Using a total ankle arthroplasty system implanted into a human cadaver ankle and a clinical 1.5 T MRI system, turbo spin echo (TSE) pulse sequences were acquired with ETL ranging from 3 to 23 and receiver bandwidth (BW) from 100 to 750 Hz/pixel, whereas effective echo time and spatial resolution were controlled. A compressed sensing slice encoding for metal artifact correction TSE prototype pulse sequence was used as reference standard. End points included the total implant-related artifact area and implant-related signal void areas. Two raters evaluated the overall image quality and preference across varying BW and ETL. Two-factor analysis of variance, Friedman test, Kruskal-Wallis test, and Pearson correlation were used. P values of less than 0.05 were considered statistically significant. Results: The total implant-related artifact area ranged from 0.119 for compressed sensing slice encoding for metal artifact correction (BW, 600 Hz/pixel; ETL, 3) to 0.265 for TSE (BW, 100 Hz/pixel; ETL, 23). Longer ETL significantly increases the total implant-related artifact area (P = 0.0004), whereas it decreased with increasing BW (P < 0.0001). Implant-related signal void areas were not significantly affected by larger echo train length, but reduced with higher BW (P < 0.0001). Readers had a significant preference for images with high BW and short ETL (P < 0.0001). Conclusions: High receiver BW is the most effective parameter for reduction of arthroplasty implant-induced metal artifact on MRI scans, whereas in contradiction to prevalent notions, long echo trains fail to reduce implant-related metal artifacts, but in fact cause degradation of image quality around the implant with resultant larger appearing total metal artifacts.



: Terms of Use : : Privacy : : Safe Sender : : Contact Us : : Ask a question :