Get Connected!

Be part of the largest network for Radiology professionals!

Topics in Magnetic Resonance Imaging - Current Issue

Topics in Magnetic Resonance Imaging - Current Issue
  1. Diffusion Quantification in Body Imaging
    imageAbstract Diffusion-weighted imaging (DWI) is increasingly incorporated into routine body magnetic resonance imaging protocols. DWI can assist with lesion detection and even in characterization. Quantitative DWI has exhibited promise in the discrimination between benign and malignant pathology, in the evaluation of the biologic aggressiveness, and in the assessment of the response to treatment. Unfortunately, inconsistencies in DWI acquisition parameters and analysis have hampered widespread clinical utilization. Focusing primarily on liver applications, this article will review the basic principles of quantitative DWI. In addition to standard mono-exponential fitting, the authors will discuss intravoxel incoherent motion and diffusion kurtosis imaging that involve more sophisticated approaches to diffusion quantification.



  2. Fat Quantification in the Abdomen
    imageAbstract Fatty liver disease is characterized histologically by hepatic steatosis, the abnormal accumulation of lipid in hepatocytes. It is classified into alcoholic fatty liver disease and nonalcoholic fatty liver disease, and is an increasingly important cause of chronic liver disease and cirrhosis. Assessing the severity of hepatic steatosis in these conditions is important for diagnostic and prognostic purposes, as hepatic steatosis is potentially reversible if diagnosed early. The criterion standard for assessing hepatic steatosis is liver biopsy, which is limited by sampling error, its invasive nature, and associated morbidity. As such, noninvasive imaging-based methods of assessing hepatic steatosis are needed. Ultrasound and computed tomography are able to suggest the presence of hepatic steatosis based on imaging features, but are unable to accurately quantify hepatic fat content. Since Dixon's seminal work in 1984, magnetic resonance imaging has been used to compute the signal fat fraction from chemical shift–encoded imaging, commonly implemented as out-of-phase and in-phase imaging. However, signal fat fraction is confounded by several factors that limit its accuracy and reproducibility. Recently, advanced chemical shift–encoded magnetic resonance imaging methods have been developed that address these confounders and are able to measure the proton density fat fraction, a standardized, accurate, and reproducible biomarker of fat content. The use of these methods in the liver, as well as in other abdominal organs such as the pancreas, adrenal glands, and adipose tissue will be discussed in this review.



  3. Quantitative Imaging in the Abdomen
    No abstract available



  4. Liver Fibrosis Quantification by Magnetic Resonance Imaging
    imageAbstract Liver fibrosis is a hallmark of chronic liver disease characterized by the excessive accumulation of extracellular matrix proteins. Although liver biopsy is the reference standard for diagnosis and staging of liver fibrosis, it has some limitations, including potential pain, sampling variability, and low patient acceptance. Hence, there has been an effort to develop noninvasive imaging techniques for diagnosis, staging, and monitoring of liver fibrosis. Many quantitative techniques have been implemented on magnetic resonance imaging (MRI) for this indication. The most widely validated technique is magnetic resonance elastography, which aims to measure viscoelastic properties of the liver and relate them to fibrosis stage. Several additional MRI methods have been developed or adapted to liver fibrosis quantification. Diffusion-weighted imaging measures the Brownian motion of water molecules which is restricted by collagen fibers. Texture analysis assesses the changes in the texture of liver parenchyma associated with fibrosis. Perfusion imaging relies on signal intensity and pharmacokinetic models to extract quantitative perfusion parameters. Hepatocellular function, which decreases with increasing fibrosis stage, can be estimated by the uptake of hepatobiliary contrast agents. Strain imaging measures liver deformation in response to physiological motion such as cardiac contraction. T1ρ quantification is an investigational technique, which measures the spin-lattice relaxation time in the rotating frame. This article will review the MRI techniques used in liver fibrosis staging, their advantages and limitations, and diagnostic performance. We will briefly discuss future directions, such as longitudinal monitoring of disease, prediction of portal hypertension, and risk stratification of hepatocellular carcinoma.



  5. Quantitative Methods in Abdominal MRI: Perfusion Imaging
    imageAbstract Recent improvements in arterial spin labeled (ASL) and vastly undersampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) acquisitions are providing a new opportunity to explore the routine use of quantitative perfusion imaging for evaluation of a variety of abdominal diseases in clinical practice. In this review, we discuss different approaches for the acquisition and data analysis of ASL and DCE MRI techniques for quantification of tissue perfusion and present various clinical applications of these techniques in both neoplastic and non-neoplastic conditions in the abdomen.


: Terms of Use : : Privacy : : Safe Sender : : Contact Us : : Ask a question :